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Optimal transport (OT) theory (Santambrogio, 2015; Villani, 2003, 2009) is a core el-
ement of the machine learning toolbox and has become within a few years the go-to
framework to analyze, model, and solve an ever-increasing variety of tasks involving
probability measures. This is best exemplified by its increasing importance to fitting
generative models, where the goal is to learn a map (Arjovsky et al., 2017; Genevay
et al., 2018; Salimans et al., 2018), or more generally a diffusion (Song et al., 2021;
De Bortoli et al., 2021) to morph a simple measure (e.g., Gaussian) onto a data distribu-
tion of interest (e.g., images). This is also apparent in the many applications that use OT
to align probability measures that have since arisen, e.g., to transfer label knowledge
between datasets (Flamary et al., 2016; Singh and Jaggi, 2020), to analyze sampling
schemes (Dalalyan, 2017), or study population trajectories (Schiebinger et al., 2019;
Bunne et al., 2023b).

In this tutorial, we primarily cast light on the static and dynamic formulations of
optimal transport, and simultaneously establish their theoretical nexus by recalling its
mathematical history from Monge and Kantorovich to modern Fields Medal winners
Villani, Figalli, and Abel and Wolf Prize recipient Caffarelli in order to provide a solid
foundation for the discussion ahead.
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Notation

Zt; Zt

6 and ¢

probability simplex of size n.

measures defined on spaces (X,)).

histograms in the simplices X, x X,,.

density with respect to the Lebesgues measure.

discrete measures defined on spaces (z1,...,2, € X, ¥1,...,ym € )).

matrix of R™*™ with all entries identically set to 1.

identity map.

ground cost, with associated pairwise cost matrix (c(z;,y;));; evalu-
ated on the support of p, v.

squared Euclidean norm.

pushforward operator.

Monge map, typically such that T, = v.

coupling measure between p and v, for discrete measures m =
Zij Pij‘s(mi,yj)'

set of couplings, for discrete measures U (u, v).

support of 7.

Wasserstein distance between measures ;. and v.

entropy of coupling 7.

regularization strength of the entropy regularization.

dual potentials.

Legendre transform of function f.

optimum of function f.

convex potential.

dynamic measures with 1,—o = po and py—7r = pr.

speed in the dynamic Benamou-Brenier or control in the stochastic
optimal control formulation.

Laplace operator.

step size.

Euclidean dot-product between vectors.
Kullback-Leibler divergence.

noise level.

stochastic process with ¢ € [0, 1].
standard Wiener process.

reference process, e.g., Brownian motion.
time-indexed smooth vector fields indicating the forward and back-
ward policy.

parameters of neural networks.

loss function.



1 Static Optimal Transport

Optimal transport takes dual roles as it induces a mathematically well-characterized
distance measure between distributions as well as provides a geometry-based approach
to realize mappings between two probability distributions. In this section, we intro-
duce the mathematical foundations of the static OT problem. Further, we provide
an extended analysis of the Monge map, which gives an actionable way to transform
from one probability distribution to another. We conclude with a complete proof of
the celebrated Brenier theorem. This quintessential result and its particularization to
translation-invariant costs lay the foundation of the flurry of neural approaches pro-
posed in the literature. This includes modeling Monge maps as gradients of convex
functions parameterized through input convex neural networks (ICNNs) (Amos et al.,
2017; Huang et al., 2021; Makkuva et al., 2020; Korotin et al., 2021b; Liibeck et al., 2022;
Bunne et al., 2022a), i.e., approaches that are a direct consequence of the Brenier the-
orem, regularizers (Uscidda and Cuturi, 2023), amortized optimization (Amos, 2023;
Amos et al., 2023), or entropic maps (Pooladian and Niles-Weed, 2021; Pooladian et al.,
2023b; Divol et al., 2022; Cuturi et al., 2023).

1.1 Monge Problem

In the 18th century "Mémoire sur la théorie des déblais et des remblais”, Gaspard
Monge sets out to solve what is now known as the Monge problem, posing a seemingly
simple, yet fundamentally complex question: Given two quantities of mass located
at two different sites, what is the most efficient way to transport one into the other?
In more formal terms, provided with two measures p,v € P(R?), here restricted to
measures supported on R?, Monge’s initial approach was to find a map T that pushes
one mass onto the other in a way that minimizes the total cost of transport. Given a
measurable const function ¢ : X x J — R, the Monge problem then reads

T :— arg inf / o, T(x))dp(x) (1)
Tip=v Jpd

where T} defines the pushforward operator that “moves” an entire probability mea-
sure on X towards a new probability measure on ), i.e., T} “pushes forward” each
elementary mass of a measure p on X by applying the map T to obtain then an ele-
mentary mass in ). For two discrete measures p = > | uidy,, v = Y7L, v;0,,, it seeks
a transport map 7' : X — ) associating each source point z; to a target point y; (see
Fig. 1a for the discrete and Fig. 1b for the continuous setting). The existence of 7™ is
guaranteed under fairly general conditions (Santambrogio, 2015, Theorem 1.22), which
require that ¢ and v have finite /, norm, and that ; puts no mass on (d — 1) surfaces of
class Cy, i.e., the family of continuous functions that have both a continuous first and a
continuous second derivative.

1.2 Kantorovich Relaxation

It was not until the 20th century, however, that the concept found a more tractable de-
velopment. In 1942, Leonid Kantorovich provided a relaxation to this non-convex and
difficult-to-solve problem. Instead of the deterministic matching proposed by Monge,
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Figure 1: Overview on different formulations of the static OT problem for discrete
and continuous measures. Monge map for a. discrete and b. continuous measures
u,v. The optimal map 7™ minimizes (1). c. Optimal coupling 7 (2) for discrete mea-
sures 1 and v. d. Mass splitting principle of the Kantorovich relaxation for discrete
measures  and v of the optimal transport plan P* and a non-optimal plan P. Figure
adapted from Peyré and Cuturi (2019).
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Kantorovich considered probabilistic correspondences that allow for the transporta-
tion of mass from a single source point to various target points (mass splitting), result-
ing in the problem formulation

W(u,v) = inf // c(x,y)m(z,y)dzdy, (2)
m€ (p,v

where [1(p,v) = {m € P(X x ) : Pyym = p and Py;m = v} is the set of couplings on
R? x R? with respective marginals x, v. Here, Py; and Py, are the pushforward by the
projections Py (z,y) = = and Py(z,y) = y Given the optimal transport coupling =, the
resulting distance W (., v) between 1 and v is known as the Wasserstein distance. A
visualization of the discrete setting is provided in Fig. 1c.

For his work, Kantorovich received the Nobel Prize in economics. The connection
of OT to basic questions in economy becomes clear when interpreting 1 as a density of
resource units, and v a density of factories, where the coupling = denotes the optimal
transportation plan of distributing resources to factories.

Despite its elegance, the Wasserstein distance (2) presents a computationally chal-
lenging optimization problem. A partial remedy proposed by Cuturi (2013) is to solve
regularized optimal transportation problems for an approximate solution. One exam-
ple of an effective regularization is entropy regularization: For € > 0, set

We.(u,v) = inf // c(x,y)m(z,y)dedy — eH (), 3)
well (p,v
where H(m) = — [[ n(z,y)logm(z,y)dzdy is the entropy of coupling 7. Notice that

the def1n1t10n above reduces to the usual Wasserstein distance (2) when ¢ = 0. When
instantiated on finite discrete measures, such as = > " | u;0,, and v = Z;”:l ;0y,, (2)
translates to a linear program

W.(p,v) = min (P,[||z;

—cH(P 4
popin cH(P), 4)

= yill*lis)
where H(P) = =3, P;j(logP;; — 1) and the polytope U(y,v) is the set of n x m
matrices {P € R}, P1,, = u,P71, = v}. Regularization with an entropy term

results in a significantly more efficient optimization (Cuturi, 2013) and differentiability
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w.r.t. the inputs. As a consequence, 4 is commonly used as a loss function or evaluation
metric in machine learning applications, e.g., for structured prediction (Frogner et al.,
2015; Janati et al., 2020) or generative model fitting (Arjovsky et al., 2017; Salimans
et al., 2018; Genevay et al., 2018). While setting ¢ > 0 yields a faster and differentiable
proxy to approximate Wy, it introduces a bias, since W, (y, 1) # 0 in general.

1.3 Kantorovich Duality

The Kantorovich formulation (2) is a convex problem on P(X x )) and thus admits a
dual formulation introduced by Kantorovich (1942), i.e., a constrained concave maxi-
mization problem defined as

W)= s [fans [g 5)

(f7g) EQSC

where the set of admissible dual potentials is given by &, := {(f,g) € L*(u) x L*(v) :
f(x) +9(y) < c(z,y),V(z,y)du @ dv ae.}. (f,g)is thus a pair of continuous functions,
often referred to as Kantorovich potentials. An informal interpretation of (5) was pro-
vided by Caffarelli (2003), revisiting the connection of OT to economics: A logistics
company is concerned with transporting products from each resource unit x to a fac-
tory y. The transportation company charges f(xz) for loading resources at point  and
g(y) for unloading it at destination y but is constrained to charge f(z) + g(y) < c(z,y).
In order to arrange prizes f and g that increase profit, they thus maximize objective (5).

The Kantorovich duality (5) is a core pillar of optimal transport, powerful due to
its generality and computationally attractive as it is easier to store two functions (f, g)
than an entire coupling 7. In the following, we will introduce the concept of c-transforms,
a useful machinery to reduce (5) even further into an optimization problem over only
one instead of two dual potentials.

Definition 1 (c-transform). c-transforms (also called c-conjugate functions) are generaliza-
tions of the Legendre transform from convex analysis defined as

Yyel, [fy) = 12}fY c(x,y) — f(x). (c-transform)

The definition of [ is also often referred to as a "Hopf-Lax formula”. Similarly to the c-
transform of f : X — R, we can define the c-transform of g : Y — R by

Ve X, ¢(y) = ;25 c(x,y) —g(y)

where ¢(y, x) = c(z,y).

Remark 1. As well-known in convex analysis (Rockafellar, 1970), the c-transform is a gen-
eralization of the Legendre transform. More precisely, for function f : R? — R its Legendre
transform is defined as

f*(y) = sup(y,x) — f(z) (Legendre transform)
z€Rd

The c-transform corresponds to this notion by considering c(x,y) = (x,y) (up to a change of
sign).



Further, f is a é-concave function if there exists a g such that f = ¢¢, and analogously,
a function g is said to be c-concave if there is a function f such that g = f¢©. When X =Y
and c is symmetric, no distinction between c and ¢ is necessary.

Using the concept of c-transforms, we can reduce (5) to a single potential: Assume
we keep dual potential f fixed and given the constraint of the dual formulation (5)

f(z)+9g(y)
9(y)

(z,y)
(l‘,y) - f(I),

we can see that the “best” potential g is given by the c-transform of f

<c
<c

9(y) < infe(z,y) = f(z).

Then, doing an alternate optimization on either f or g, we replace the dual potentials
(f,g) with (f, f¢), and then (f°, f¢), whilst preserving the constraints and increasing
the value of the integrals of (5). Although one could continue this alternate optimiza-
tion further, the invariance property f°“ = f¢ for any f shows that one can only "im-
prove” once the dual potential using c-transforms, resulting in the semi-dual formula-
tion of optimal transport

f*i=arg max /fd/rl—/fcdu, (6)

f c-concave

where f* is the optimal dual function and c-concave.

1.4 Geometry of Optimal Transport

Following Gangbo and McCann (1996), f* can be linked to the optimal transport map
T* via the following result:

Theorem 1 (Gangbo-McCann Theorem). Given a cost function c, the relationship between
the optimal transport map T* : X — X and the c-concave function f* denoting the optimal
dual potential is given by the expression

T*(x) = Vec(x,-) o Vf*(z). (7)

Thus, map T depends explicitly on the gradient of the cost, or rather on its inverse map (Gangbo
and McCann, 1995).

Following Gangbo and McCann (1996) and considering translation-invariant costs' gener-
ated by a convex potential h : R? — R, ie., c(x, y)=h(x-y), this reduces to

T*(x) = x — VA" 0 Vf*(x), ®)
where h* is the Legendre transform of h given by

Vz, h*(2) :=sup(z,z) — h(z). )

xT

LA cost is translation-invariant if ¢(z,y) = h(z — y) for h(z) = h(—2).
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Proof. Santambrogio (2015, Theorem 1.39) proves that the solutions of (2) and (5) are
equivalent, i.e.,

Ajmwﬂéﬁdwzlx¢ﬂm+f%wMﬂmw=1Lw;@wmﬂmw.

Then, a point (zo, yo) in the coupling 7, i.e., (xo, yo) € supp(m), necessarily satisfies the
constraint of the dual problem (5)

™ (20, %0) > 0 < f*(w0) + g" (y0) = ¢ (20, %0) -

Replacing g by the c-transform of f, we have

< [ (w0) + [ (y0) = ¢ (w0, Y0)
& [ (yo) = c(zo,90) — f* (w0) -

Yet, by definition of the c-transform, f* is given by
< [ () = iIZlfC(Z,yO) =1 (2).
Thus, z( is a minimizer of the above expression and V¢ (zo, y0) = Vf* (zo). Therefore,
after inversion, we have yo = V,c(z,-)"' o Vf*(x) and
T*(x) =2 —Vh* o Vf*(x).
Applying this result to ¢(z, y) = h(z — y), we get
Vac(z,y) = Vh(z - y)

V.e(z,-) = Vh(z —-)
Vaee(z, )t =2 — (Vh)().

Note that (Vh)~! is equivalent to VA* with the convex conjugate h* and thus,
Vee(z, )t =2 — Vh*(-).
O

Alternative formulations that relate the Kantorovich setting (with general costs) (5)
to that of Monge (1) were proposed by Riischendorf (1991a,b); Caffarelli (1996).

The case of the squared Euclidean cost® ¢(z,y) = ||z — y[[*in X = Y = R* deserves
a special attention. Taking advantage of the particular form of the quadratic cost func-
tion, we can expand the constraint of (5) such that

) +0) < glle =9l = |31l = )| + 51018 - o) = ()

and subsequently reparameterize ¢(z) == 1|z[|3 — f(z) and ¢(y) = i||y[|3 — g(y). Mir-

roring the same logic as for the c-transform, we derive the semi-dual in the Euclidean
setting

inf /gpdu+/<p*du. (10)

p convex

?For elegance, we consider c(z,y) = 1||z — y||? instead of ¢(z,y) = ||z — y|*.
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Following the double convexification trick as outlined in Villani (2003, Lemma 2.10),
we see that applying the Legendre transform twice yields function pair (¢**, ¢*). As
each of them is defined as the supremum of a family of linear functions, the result is
an optimization problem over two convex lower semi-continuous (Ls.c.) functions.

Similarly, for the special case of the squared Euclidean distance the Gangbo-McCann
Theorem (8) with h = 1| - |3 implies that Vi = Vh* = 1d, and thus

|
T(0) = Vfa) = ¥ (3ol = () ) (0) = (o),

where we again reparameterize p(z) = 1|z[|3 — f(z) and ¢(z) = 1||z||3 — f(z) can be
shown to be convex.

This connection presents a well-known fact that has been investigated first by Bre-
nier (1987, 1991), establishing for the special case of the Euclidean distance the equiva-
lence of the Monge (1) and Kantorovich formulation (2), the uniqueness of the optimal
coupling 7, and instantiating that there must exist a unique (up to the addition of a
constant) potential ¢* : R — R such that T* = V¢*. This theorem has far-reaching
implications: When seeking optimal transport maps, it is sufficient, to restrict the com-
putational effort to seek a “good” convex potential ¢, such that its gradient pushes p
towards v. Let us state the celebrated Brenier theorem (1987) in more formal terms:

Theorem 2 (Brenier Theorem). In the setting where both X and Y are equal to R?, and the
cost function c(x,y) = ||z — y||* is employed, and at least one of the two input measures
possesses a density p,, in relation to the Lebesgue measure, then there exists a unique optimal
solution m in the Kantorovich formulation (2). This solution is exclusively supported on the
graph (x,T(x)) of Monge map T : R — R<. In other terms, we can express = as (Id, T )3«
meaning that for any function h belonging to the set Yh € C(X x Y), the following equality
holds

/‘ M%yﬂﬂ%y%—/h@JWQMM@.
X XY X

Moreover, this map T is uniquely determined by the gradient of a convex function ¢, denoted
as T'(x) = V(z). The function ¢ is the unique convex function, up to an additional constant,
for which (Vy)spu = v.

Corollary 1. Under the assumption of the Brenier Theorem, V is the unique solution to the
Monge transportation problem (1), i.e.,

/HI—Vw )2y :1m(/nx— )2d ). (11)

The Brenier Theorem has been exploited to propose neural OT solvers (Taghvaei
and Jalali, 2019; Makkuva et al., 2020; Korotin et al., 2021a; Bunne et al., 2022b; Alvarez-
Melis et al., 2022; Mokrov et al., 2021; Amos, 2023), proving its essential nature in mul-
tiple instances and modern developments of optimal transport. Further, it presents
an elegant way to solve the Monge problem in a geometric sense and has profound
implications for the dynamic version of the problem, which we will study next.

2 Dynamic Optimal Transport

We have hitherto engaged with the static optimal transport problem, establishing a
solid foundation upon which to build more desirable dynamic formulations. In fact,

8



a. Dynamic Optimal Transport
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Figure 2: Overview on different formulations of the dynamic OT problem. a. We
can model the evolution of a measure ;i; over time as minimal path on a time-varying
vector field v(t, ) or according to the gradient of a convex potential V. b. Alterna-
tively, taking a stochastic perspective, we can study the dynamic formulation of the
entropy-regularized OT problem (3) and find a stochastic process IP; that describes the
particle dynamics from i to ji;.

the roots of these dynamic formulations are embedded within the static OT framework:
As posited by Benamou and Brenier (2000), the dynamic formulation “was already
implicitly contained in the original problem addressed by Monge”, where “eliminating
the time variable was just a clever way of reducing the dimension of the problem.”
When reintroducing time in the dynamic version, the optimal transport map becomes
a time-dependent flow capable of describing the evolution of a measure over time.

In this section, we will cover several perspectives and frameworks of the dynamic
OT problem: As mentioned earlier, the Brenier theorem forms a critical bridge that con-
nects the static and dynamic formulation, perpetuated in the Monge-Ampere equation.
Further, Benamou and Brenier (2000) introduce how the dynamic point of view offers
an alternate and intuitive interpretation of optimal transport with links to fluid dynam-
ics. The resulting framework surprisingly leads to a convex optimization problem that
can be parameterized through continuous normalizing flows (NF) (Tong et al., 2020;
Chen et al., 2018) or flow matching frameworks (Lipman et al., 2023; Liu et al., 2022b;
Pooladian et al., 2023a; Albergo et al., 2023). We further highlight the connections of OT
to partial differential equations (PDEs) such as Fokker-Planck-like equations through
the Jordan, Kinderlehrer, and Otto scheme. Lastly, moving beyond PDEs and taking a
stochastic control perspective, we will introduce the notion of the Schrédinger bridge
(SB) problem.

2.1 Monge-Ampere Equation

As a direct consequence of the Brenier Theorem, if T'(z) = V¢(z), ¢ being smooth
and strictly convex, and i and v absolutely continuous with densities p,, and p,, we
can express T;/. = v in a nonlinear PDE form. More concretely, as a consequence of a
simple change-of-variable computation, ¢ is a solution of the Monge-Ampeére equation
that reads

det (8¢ (2)) p,(Vp(2)) = pu(2), (12)

where 9%p(r) € R is the Hessian of ¢, describing the continuous evolution from
p to v. First studied by Monge in 1781 and later by Ampeére in 1819, this nonlinear



partial differential equation arises in several problems from analysis to geometry, for
example, in the Weyl and Minkowski problems in differential geometry of surfaces.
The regularity of the solutions of (12), with implications on regularity results of the
optimal transport map 7, has been subject of a series of works by Caffarelli in the
1990s, for which he was awarded the Abel Prize in 2023, as well as more recently by
Figalli, recognized with the Fields Medal in 2018.

2.2 Benamou-Brenier Formulation

Avoiding solving (12) directly, Benamou and Brenier (2000) introduce an alternative
numerical framework by connecting the optimal mass transfer problem to continuum
mechanic frameworks. Deviating from the previous notation of (1, v/), in the following
sections we study the dynamic problem via the evolution from measure 1 at time
t = 0topu att = 1. In the setting X = ¥ = R? with the squared Euclidean cost
c(r,y) = ||z — y||%, the solution of (2) then coincides with finding the minimal path
(14){—o, Or more concretely, a curve in the space of measures, minimizing a total length.
Such path p; can be described through a time-varying vector field v(¢, -) which moves
particles around, satisfying the continuity equation in fluid dynamics or conservation
of mass formula

% + V- () =0, Hi=0 = Jlo, ft=1 = H1, (13)
where the vector field v(t, -) denotes the speed and ,,v(t, -) = J; corresponds to the mo-
mentum. Reformulating the optimal transportation problem in a differential way, an
“Eulerian” formulation inspired by fluid mechanics, will be crucial for the subsequent
study of dynamical problems. Every curve y; describing the evolution of the measure
over time can be interpreted as the fluid flow along a family of vector fields. We are
searching for the vector field v(t, -) that (i.) satisfies the conservation of mass (13), and
(ii.) minimizes the kinetic energy of the path. The infinitesimal length of such a vector
tield can be computed via

1/2
ol = ([ Il duto)) (1

resulting, in the case of X = Y = R? and ¢(z,y) = ||z — y||?, in the minimal-path
reformulation of (2)

1
. 1
W (o) = inf [ [ ot 0) o) (15)
(lu‘t"v) 0 n 2
0
% +V-(vp) =0

Ht=0 = Ho, Ut=1 = M1 -

Thus, path p; describes the time-evolving density of a set of particles moving contin-
uously with velocity v(t, -). Taking the perspective of fluid dynamics, (14) can also be
interpreted as the kinetic energy of the particles. The Benamou-Brenier formulation (15)
then selects the vector field v that minimizes the total efforts or the total kinetic energy
one has to spend in order to move particles around according to the vector field v.
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A particularly important case occurs when there exists an optimal Monge map 7" :
R — R? with Tyuo = p; (see Brenier Theorem): The solution of the time-dependent
OT problem (15) then coincides with McCann’s displacement interpolation between
two measures. Reciting the Brenier Theorem, with 7' = Vy, 1, is equal to McCann’s
interpolation between jiy and 11, given by

= [(L = )1 + 1V lgpio = [(1 = )1 + tT]ypa0. (16)

Despite their simplicity, this concept possesses remarkable applications beyond the
realm of optimal transport (Bonneel et al., 2011). In particular, its interpretation as a
geodesic formula in Riemannian geometry is discussed in Otto (2001) and serves as a
pivotal link to the subsequent discussion.

2.3 Jordan-Kinderlehrer-Otto Flows

The time-dependent Benamou-Brenier formulation (15) not only provides us with a
more complete description of optimal transport but also the discovery that the result-
ing path (u;);_, may be seen as a constant-speed geodesic interpolating between pop-
ulation yip and p; in the space of measures, i.e., a Wasserstein geodesic. When studying
dynamic processes in biomedicine, however, phenomena such as cellular differentia-
tion in developmental processes, tissue formation, or cell migration involve intricate
spatiotemporal dynamics that cannot be adequately captured by solely studying the
interpolation between two measures 1, and j;. Instead, many phenomena in biology
and physics can be modeled through an energy functional J such that the minimiza-
tion of J describes the observed dynamics of the studied system —a concept known
as gradient flows. At their core, gradient flows provide a powerful framework for
understanding the evolution of functions or systems toward an optimal state through
the direction of the steepest descent of a function J. More concretely, gradient flows
capture the intuitive idea of objects moving in a direction that decreases their energy,
seeking a state of minimum potential or maximum stability. In the following, we will
study gradient flows in the Euclidean setting before considering generalizations to ar-
bitrary measures that allow studying the evolution of populations over time.

Euclidean case. Consider the evolution of a vector x over time in Euclidean space.
Provided with a smooth functional J, this can be realized through the standard gradi-
ent descent (forward) scheme

Tyl = Tt — T™VJ (.’,L't) s

where 7 is the step size. The resulting sequence z, ..., 2,1, Z¢, Zy41, . . ., o7 then de-
scribes the trajectory of a single particle x over time. For non-smooth functions, one
can resort to a proximal scheme, i.e.,

: !
Tpp1 = Prox” (x¢) == argmin > |z — a||” + J(z).

The proximal scheme can thus be seen as a backward Euler discretization of the gradient
flow.

11



Table 2: Equivalence between gradient flows and PDEs where the gradient flow of
flow functional .J(;;) in Wasserstein space satisfies the corresponding PDE (Alvarez-
Melis et al., 2022; Villani, 2003). The function f : R — R is convex and superlinear and
V,W : X — R are convex and sufficiently smooth.

Class PDE 2 = Flow Functional J (1) =

Heat Equation Apy [ () log ut( ydz

Advection V- (uVV) JV(z)p

Fokker-Planck Apy + V- (1 VV) f,ut(x log Mt x)dx + fV x)pe(x)dw
Porous Media A+ V- (uVV) —L ()™ de + [ V(2)pu(z)ds
Advection, Diffusion, f V(x)ps(z)da + J f (e )

Vo[ (V' (pe) + VV A+ (VW) 5 )]

and Interaction +35 [ W (x — 2') pu(2) e (2) dawda’

Wasserstein case. When studying the evolution of a population or measure j; over
time, however, we need to resort to optimal transport metrics W (-, -) (2) instead of the
ly-norm ||-||%. Considering functionals J that take a measure or population as input, a
gradient flow of y w.r.t. to J canbe similarly expressed through forward and backward
schemes. Assuming J(u) == [ E(x ,1.e.,ignoring particle interaction, the forward
scheme reads

pe1 = (I =TV E),

with the corresponding backward formulation defined as

o1
Ht41 = argmin ZW (ks 1) + J (). (17)
o

This implicit time stepping is a useful tool to construct continuous flows: In the limit
7 — 0 the resulting sequence {u,;}{_, approximates a continuous flow g, i.e., a path
in the Wasserstein space, and can thus be seen as the analogy of the usual proximal
descent scheme, tailored for probability measures (Santambrogio, 2015, p.285)

Interest in Wasserstein gradient flows was sparked by the seminal work of Jordan,
Kinderlehrer, and Otto (1998) who studied diffusion processes under the lens of the OT
metric (see also Ambrosio et al., 2006). For a broad class of potentials J and provided
with an initial distribution 1, the resulting time-discrete, iterative variational scheme
induced by the so-called Jordan-Kinderlehrer-Otto (JKO) step (17) reconstructs the evolu-
tion of measure ji; over time. As 7 — 0, the solution of the time-discretized gradient
flow converges to the solution of a corresponding PDE, and the resulting evolutions
are often referred to as JKO flows.

Following Otto (2001) on the calculus of optimal transport (Otto calculus), a large
class of partial differential equation may then be viewed as gradient flows on the
Wasserstein space (Jordan et al., 1998). For instance, the standard heat equation of
physics, i.e.,

8:ut
ot
with A being the spatial Laplacian, can be expressed as a gradient flow of the energy
f p(x) log pu(x)dz, i.e., Gibbs-Boltzmann’s famous functional with the physical
mterpretatlon of the negative of an entropy. Among further examples displayed in
Table 2 (Alvarez-Melis et al., 2022; Villani, 2003), a classic subject of the theory of PDEs

AMD
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also comprises the linear Fokker-Planck equation

0
% = A +V - (1, VV), (18)

that is connected to flow functional
Hw) = [ la)logpua)do + [ Viayu(oyds.

Here, the first term again represents the negative Gibbs-Boltzmann entropy and the
second term plays the role of an energy functional with a smooth potential function
ViR R

Thus, JKO flows have found application in inferring the evolution of populations
over time, crucial in many scientific disciplines, for instance in biomedicine to recon-
struct cellular dynamics from observations (Bunne et al., 2022b; Alvarez-Melis et al.,
2022; Mokrov et al., 2021; Benamou et al., 2016). This formulation is particularly inter-
esting for studying dynamical systems in biomedicine, as the exact expression of the
PDE corresponding to functional J does not need to be known. Instead, we can pro-
pose parameterizations of energy functional J that can be learned from data, an idea
explored in Bunne et al. (2022b). While providing a general framework for studying
general and complex population dynamics, each step of the JKO scheme (17) is costly
as it requires solving a minimization problem involving the Wasserstein distance (2).
Beyond introducing learning schemes for functional J, Bunne et al. (2022b) thus intro-
duce novel efficient and differentiable schemes for solving JKO flows.

2.4 Stochastic Control Perspective

Benamou-Brenier motivated the introduction of the dynamic optimal transport prob-
lem from the perspective of fluid dynamics. As we shall see, both the OT problem (2)
and its regularized version (3) can be viewed as stochastic optimal control problems.
Control theory at the heart is concerned with finding optimal policies for dynamic sys-
tems subject to constraints. Despite wide-ranging progress on both the theory and ap-
plications, deploying control theory to large-scale and often unknown systems remains
a grand challenge. As we will explore in the following, stochastic optimal control prob-
lems to regulate dynamic systems emerge from the theory of optimal transport (San-
tambrogio, 2015) that provides a geometric variational framework for studying flows
of distributions on metric spaces (Chen et al., 2021a). These theoretical concepts build
the foundation of recently developed deep learning architectures employed as gener-
ative models (Song et al., 2021; De Bortoli et al., 2021) or for studying the evolution
of dynamical systems over time (Chen et al., 2022; Bunne et al., 2022b; Vargas et al.,
2021). Further, celebrated control principles such as the Pontryagin maximum princi-
ple have been emphasized repeatedly in neural ordinary differential equation (ODE)
(Chen et al., 2018) and stochastic differential equation (SDE) works (Jia and Benson,
2019).

... on Optimal Transport

Following Chen et al. (2021a,b), we will establish this stochastic control viewpoint by
studying the Benamou-Brenier formulation using elementary control considerations.
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For this, we consider a system with state distribution d.X; = v (¢, X;) dt and initial state
Xo ~ po. Provided with a time-dependent feedback control v(t, -), the objective of (15)
has the following stochastic interpretation

/01 /n %Hv(taw)HQth(x)dt — K {/01 % lo(t, X,)||2 dt} ’

resulting in the stochastic control formulation of the OT problem

1
| 1 )
inf B { / L ote, x,)) dt} (19)
dX; = v (t, X;) dt (20)
Xo ~ o, X1~ .

V here represents the family of admissible state feedback control strategies. Typically,
in a density control problem, the objective is to guide a dynamical system from an
initial state X, characterized by i to a desired state ;; with minimum cost and con-
trol that is a member of the set of admissible actions, i.e., v € V. The above strategy,
however, differs from standard optimal control in the added constraint on the terminal
state distribution and the absence of a terminal penalty.

... on Regularized Optimal Transport

Similarly, the regularized OT problem (3) can be cast as a stochastic control problem.

1
. 1 9
ing B { [ glote xoar) e1)
dXt = U(t, Xt)dt + O'th (22)
Xo ~ po, Xy~ p,
where W, denotes a Wiener process, i.e., integrals of white noise. Different from (20),

however, (22) is a stochastic diffusion process.
Besides, this problem exhibits a fluid-dynamic interpretation, i.e.,

1
1
inf / / —|Jv(t, z)||*dpe(x)dt (23)
(Ht,'t)) 0 n 2
0 o?
—a'ut/t + V- (vut) — ?A,Ut =0 (24)

Ht=0 = Mo, Ht=1 = M1,

where A denotes the Laplace operator. (24) is the Fokker-Planck equation capturing
the state distribution evolution. As ¢ — 0, the solution to this problem converges to
the one of the Benamou-Brenier problem (15) (Mikami and Thieullen, 2008). For an
extended discussion, see Dai Pra (1991); Mikami (2000, 2002).

2.5 Schrodinger Bridges

Interestingly, Eq. (21) first emerged in a very different setting. In his work “Uber die
Umkehrung der Naturgesetze” published in 1931, Schrodinger studied the most likely
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random evolution between two marginals, i.e., two point clouds of diffusive particles.
His Gedankenexperiment is best illustrated through a population of independent and
identically distributed particles in R? observed at t = (0 as the empirical distribution i,
and again at ¢ = 1 as y;. To describe the most likely dynamics of these particles over
time, we aim at finding the stochastic process P; on [0, 1] such that Py = po, Py = 1.
Provided with some prior knowledge of a reference process Q;, e.g., that the un-
derlying dynamics follow a Brownian motion (BM), we aim to identify the stochastic
process P, that best describes the particles evolution, i.e., minimizes the overall relative
entropy
min  Dgp(P]|Q) = /[o ) log (—) dP,, (25)

Po=po, P1=p1 C th

where (‘%}t denotes the Radon-Nikodym derivative and C[0, 1] the continuous paths on
R? over the time interval [0, 1]. More concretely, to find P;, Schrodinger (1931, 1932)
considers the objective (25) as the “mostly likely process” that explains the marginal
distributions Py, P; relative to reference process ;. This KL-minimization problem is
thus called the (generalized) Schrodinger bridge. This idea generalizes verbatim to
any reference process (Q;. Unfortunately, in most applications, notably biology, we
often have little to no prior information about the underlying process IP; (Liberali et al.,
2014).

Recovering the stochastic calculus of variations formulation of the Schrédinger bridge
(21) can be achieved via the Girsanov theorem which tells us how stochastic processes
behave under changes in measure. The equivalence between both formulations can be
then established via

dP, Py Ll o) 2
o o] [ Totexn - aws [t X

_ T
and thus Dy, (P;||PY=?) :E{/ @Hv(t,Xt)H%lt},
0

where P, and Py=" denote a controlled process (with control v) and an uncontrolled
process, i.e., with v(t, -) = 0, respectively. In other words, the relative entropy between
the stochastic process describing the particle dynamics and the reference process is
equal to the control energy (scaled by ).

Optimality criteria. Classical strategies for solving (21) commonly replace the bound-
ary constraint X; ~ p; with a penalty or artificial terminal cost, thus transforming (21)
to standard stochastic optimal control formulations. The resulting optimality condi-
tions are

oy 1 , 02

i —§HV¢|| — 7A¢ (26)
3ut . 0'2

i =V (V) + gﬂﬂt (27)

with value function ¢ (¢, x) and i, being the associated optimal marginal density. Here,
v = V¢ and ¢(1,-) is equivalent to the terminal cost. Further, Eq. (26) is a second-
order Hamilton-Jacobi-Bellman equation, while (27) is the continuity equation. After
applying the Hopf-Cole transform (¢, ;) — (&, P),

P = exp<%) and & = e eXp(;__ZZ))7
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a. Brownian Motion b. Particle Evolution with external force f and noise g
dXt = (t, Xt) dt + Uth dXt = [f (t, Xt) + g(t)?} (t, Xt)] dt + g(t)th

e particle

example
trajectory 1

f(t, X4)

Figure 3: Comparison of different SDE classes. a. Particles evolve according to simple
BM in all directions depending on the noise level 0. b. A particle evolution with
an external speed f, here exemplified through a horizontal drift, and time-dependent
noise g. The initial location of the particles is denoted as a blue dot, example trajectories
are highlighted by blue lines.

we obtain the SB system associated to the SDE class in (22) given by

0P o?

ob 0% ~ ~

i.e., a backward Kolmogorov and a Fokker-Planck equation, respectively. The optimal
control is then given by v(t, X;) = 02V log &(t, x).

Generalizations to Other SDE Classes

To describe complex biological processes, however, we need to consider SDE classes
comprising nonlinear drifts, affine control, and time-varying diffusion. In the follow-
ing, let us consider SDEs with an external speed f(-,t) : R? — R, time-dependent
diffusion ¢(¢) € R, and standard Wiener process W, € R%.> Caluya and Halder (2021);
Chen et al. (2022) provide a generalization of the above framework that reads

1
inf { IR X»H%lt} 29)
dX, = [f (t, Xy) + g(t)v(t, Xy)] dt + og(t)dW, (30)
Xo ~ po, Xy~ p,

with ¢(t) being uniformly lower-bounded and f(¢, X;) satisfying Lipschitz conditions
with at most linear growth in x. The effect of adding an external force f, here exempli-
fied through a horizontal drift, compared to standard Brownian motion is visualized
in Fig. 3.

SHereafter, we will sometimes drop f = f(¢, X;) and g = ¢(t) for brevity.
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Optimality criteria. Again, we recover the optimality criteria via a Hopf-Cole trans-
form of (29) resulting in

@ 2 ~
g_t = va'f- T par st (0,)(0,-) = po, (31)
a{ﬁ N 2 ~ ~

with the optimal control v(t, X;) = o%g(t)Vlog® (t, X;). The solution in (31) can be
expressed through two coupled SDEs of the form (Léonard, 2013)

dX, = [f +¢*Vieg® (¢, X,)] dt + g dW,, Xo ~ po, (32)
dx, = [f - 92V1og$(t,Xt)} dt + g dW,, Xp ~ pr, (33)

where T'=1,0 = 1, and Vlog @ (¢, X;) and V loggf(t, X;) are the optimal forward and
backward drifts for the Schrodinger bridge.

2.5.1 Diffusion Schrédinger Bridges

Interestingly, the underlying SDEs (30) coincides with the dynamic systems consid-
ered in score-based generative models (SGMs) (Song et al., 2021), an emerging gen-
erative model class that has achieved remarkable results in synthesizing high-fidelity
data (Song and Ermon, 2019; Kong et al., 2021). It also represents a key connection that
has recently fueled the development of diffusion Schrodinger bridges (DSBs) (De Bor-
toli et al., 2021; Chen et al., 2021b; Bunne et al., 2023a; Liu et al., 2022a). Compared
to classical diffusion-based generative models (Daniels et al., 2021; Song et al., 2021),
these algorithms allow interpolation between complex distributions. Extended to the
Riemannian geometry (Thornton et al., 2022; De Bortoli et al., 2022), it has found ap-
plications in molecular dynamics (Holdijk et al., 2022; Somnath et al., 2023), and cell
differentiation processes (Vargas et al., 2021; Bunne et al., 2023a; Tong et al., 2023).

To learn and parameterize V log @ (¢, X;) in (32) and V log o (t, X,) in (33) with Z,, Z;
R? — RY, ie., two time-indexed smooth vector fields called the optimal forward and
backward drift, respectively. Note that (33) runs backward in time, i.e., from 1 — 0
(Anderson, 1982). Choosing f and g depending on the considered SDE class, the for-
ward and backward policies Z;, Z; are generally unknown. Similar as in score-based
generative models (Song et al., 2021; Hyvarinen and Dayan, 2005) which parameterize
the score function, in order to estimate the resulting SB from data, we learn the forward
and backward drift through neural networks (NNs) with parameters 6, ¢, i.e., Z?(z)
and Z{ (). For a visualization of the resulting parameterization, see Fig. 4.

Several estimators and training procedures for the so-called diffusion Schrodinger
bridges, i.e., for learning Z;, and Z,, have been proposed based on either Gaussian
processes (Vargas et al., 2021), dual potentials (Finlay et al., 2020), or neural networks
(De Bortoli et al., 2021; Chen et al., 2022). In this thesis, we consider the likelihood
training framework by Chen et al. (2022) grounded on forward-backward SDE (FB-
SDE) theory (Ma and Yong, 1999; Exarchos and Theodorou, 2018). Crucially, these
forward-backward SDEs (FBSDEs) can be used to construct the likelihood objectives
for SBs that, surprisingly, generalize the ones for SGMs as special cases.

17



forward policy Zf
Xo ~ Ho dX; = [f + ¢°V1og @ (¢, Xy)] dt + g dW,,

®

reverse SDE dX, = |f — ¢*°Vlog ® (t, Xy)| dt + g AW, X1~
backward policy Z;b

Figure 4: Parameterization of diffusion Schrodinger bridges. The forward SDE with
forward policy 7, steers particles X, ~ o from ¢ = 0 to p; att = 1. The reverse SDE
runs backward in time. Here, backward policy Z; determines the evolution of particles
Xy ~patt=1toppatt =0.

The negative likelihood functions for # and ¢ are then given by
1 1 . . .
oo 0) = [ B [SIZ0P + 99, 20+ (2020 &t Xo = ). @4a)
0
1 1 .
i0) = [ B [SIZ00° +9V, 204 (222D dX =] (i)
0

and serve as loss functions for likelihood-based training of DSBs. Here, V- denotes the
divergence operator w.r.t. the z variable: Forany v: R? — R?, V,-v(z) = ¢ | Zv;(x).

Unfortunately, such frameworks necessitate a forward-backward learning pi‘ocess
known as the iterative proportional fitting (IPF) procedure (Fortet, 1940; Kullback,
1968). As both policies Z;, Z;, are initially unknown and randomly parameterized,
training DSBs often results in numerical and scalability issues. Several works have thus
studied initialization schemes and methods to improve numerical robustness (Bunne
et al., 2023a).

Further, none of these approaches is capable of incorporating alignment of the data.
This can be seen by inspecting the objective (25), in which the coupling information
(zf, x%) is completely lost as only its individual marginals s, y1 play a role therein.
Thus, several approaches propose an algorithmic framework that solves (32)-(33) in
settings where sparse trajectories, or partially aligned data, are available without re-
sorting to IPF (Somnath et al., 2023; Shi et al., 2023; Tong et al., 2023; Pooladian et al.,

2023a).

Resources

Extended discussions on theoretical properties and numerical considerations can be
found in the following books and review articles:

* G. Peyré and M. Cuturi. Computational Optimal Transport: With Applications
to Data Science. Foundations and Trends in Machine Learning 11.5-6 (2019)
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https://arxiv.org/pdf/1803.00567.pdf
https://arxiv.org/pdf/1803.00567.pdf

¢ C. Villani. Topics in Optimal Transportation. GSM Vol. 58, AMS, 2009.

¢ F Santambrogio. Optimal Transport for Applied Mathematicians. Birkhéduser,
2015.

* Y. Chen, T. T. Georgiou, and M. Pavon. Optimal Transport in Systems and Con-
trol. Annual Review of Control, Robotics, and Autonomous Systems Vol. 4
(2021).

Further, the above-mentioned methods are implemented in various Python libraries.
In particular,

® OTT: An OT library in JAX (Bradbury et al., 2018) by Cuturi et al. (2022).

e POT: An OT library in NumPy (Bradbury et al., 2018) and PyTorch (Paszke et al.,
2019) by Flamary et al. (2021).

® GeomLoss: An OT library in PyTorch (Paszke et al., 2019) by Feydy et al. (2019).
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